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EXECUTIVE SUMMARY 

Cracks are one of the main defects on concrete surfaces, and they are indicators of 

concrete structures’ state of health. Because traditional methods to identify and assess cracks rely 

on manual measurements, a significant number of studies have focused on identifying ways to 

automate this process. Accordingly, this study proposed to combine convolutional neural 

network (CNN)-based algorithms and traditional image morphological operations for crack 

detection and measurement. The proposed approach was tested on data from six images 

containing ten cracks of various sizes and shapes that were obtained from laboratory experiments 

in a controlled environment. The proposed methodology achieved an average F1 score of 0.93, 

with 88.17 percent accuracy in crack length measurement and 94.40 percent accuracy in width 

measurement. Future research will focus on fine-tuning the proposed crack detection and 

measurement methodology and will evaluate it with a set of images acquired from a full-scale 

structure such as a bridge or a building 
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CHAPTER 1. INTRODUCTION 

The American Society of Civil Engineers (ASCE) reported that approximately 231,000 

bridges across the United States, corresponding to 37.4 percent of the nation’s bridges, are in 

critical condition and need to be repaired immediately. Moreover, 46,154, or 7.5 percent of all 

bridges in the nation, are considered structurally deficient (ASCE 2021). The condition of these 

bridges is established through periodic inspections that are conducted manually, a process that is 

time consuming, labor intensive, and prone to error. Moreover, when rapid reconnaissance to 

determine the condition of a structure is needed, right after catastrophic disasters such as 

earthquakes or hurricanes, traditional inspections cannot guarantee optimal results. Therefore, 

various efforts to establish automated approaches for structural inspections have been proposed.   

For structural assessments, visual inspections, which mainly focus on the identification 

and assessment of surface defects, are very important. Cracks on concrete surfaces are 

considered to be main defect features, and they are the major indicators of the stability and 

durability of concrete structures (Chen et al. 2021). Therefore, the identification and assessment 

of cracks play a big role in concrete structure inspections, and the relevant studies have focused 

on automating the process of crack detection and measurement by leveraging computer vision 

and machine learning techniques.  

To date, various image-based crack detection techniques have been proposed to automate 

crack identification and assessment. Several of the studies proposed crack detection methods 

have relied on image enhancement and have implemented various computer vision techniques 

such as edge detection algorithms (Kanopoulos et al. 2002, Wang and Zhou 2008, Li et al. 2009), 

automatic threshold image segmentation (Otsu 1979), and image morphological operations 

(Nguyen et al. 2011, Xu and Turkan 2020). Not only have these studies achieved reliable results 

in terms of accuracy, but they also have provided a well-defined base for automated crack 

assessment. However, most of these studies have been performed on ideal test images containing 

cracks with clear edge-gradient changes and minimal numbers of non-crack features such as 

stains and shadows.  

Simultaneously, deep learning algorithms, including several convolutional neural 

networks (CNN) architectures, have been proposed and utilized to improve the robustness and 

the accuracy of crack detection results, especially when they are applied to images containing 

stains and shadows (Krizhevsky et al. 2012, Simonyan and Zisserman, 2015, Szegedy et al. 
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2015, He et al. 2016). These CNN-based crack detection methods have a significant advantage 

over the computer vision-based techniques described above because they discard non-crack 

features from the original images. As a result, they provide better results than the results that can 

be obtained with conventional image morphological operations (Liu et al. 2019, Yang et al. 

2018, Gopalakrishnan et al. 2017, Cha et al. 2017, Lee et al. 2019, Islam and Kim, 2019. 

Bhowmick et al. 2020), and they offer new directions for automated crack assessment, which can 

potentially replace manual measurements. Unfortunately, like other deep learning-based 

algorithms, larges number of training images and significant computing resources are required to 

ensure their performance.  

Recent studies have focused on overcoming these limitations to achieve a high accuracy 

when images obtained from real-life structures are used. Accordingly, they have proposed to 

combine different techniques to compensate for each other’s limitations, such as combining the 

results obtained with a deep learning-based technique applied to digital images with the results 

obtained using a 3D point cloud. Mohan and Poobal (2018) concluded that the fusion of various 

existing approaches can provide better crack detection results.  

Accordingly, this study proposed a new methodology for automated crack detection and 

measurement. First, a crack detection approach combining conventional image morphological 

operations and a CNN-based algorithm was proposed. Next, skeletonization and orthogonal 

projection algorithms were utilized to measure the length and width of cracks. Finally, the 

overall performance of the proposed crack detection and measurement approaches were 

evaluated with data obtained from laboratory experiments in a controlled environment. Because 

the test images used in this study contained cracks with various branches that had different 

widths, the overall performance of the methodology used in this study could be evaluated 

comprehensively, i.e., the accuracy and the sensitivity of the methodology could be evaluated for 

cracks with different types and shapes. 

 

  



 

3 

CHAPTER 2. LITERATURE REVIEW 

This section provides a comprehensive review of previous studies that focused on crack 

detection and measurements. The crack detection methods are based on conventional image 

morphological operations and deep learning algorithms, and the approaches that combine 

multiple methods are reviewed to identify their strengths and weaknesses. Relevant studies on 

crack measurements are also reviewed to identify an optimal method for measuring crack length 

and width. 

2.1. Crack Detection 

Previous studies that focused on automating crack detection mainly utilized digital 

images. As such, conventional object detection and segmentation algorithms have played a major 

role in image-based crack detection. Researchers have focused on detecting the edges of cracks 

by using various edge detection methods, such as Sobel, Prewitt, and Canny (Kanopoulos et al. 

2002, Wang and Zhou 2008, Li et al. 2009). Using these methods, crack edges, where prominent 

gradient changes are especially intense in certain directions along the feature of interest, can be 

detected. Unfortunately, if the gradient changes are not significant, meaning that the crack is not 

clearly distinguishable, the overall crack detection performance decreases drastically.  

To effectively segment any crack, whether gradient changes were distinctive or not, Otsu 

(1979) presented a segmentation method based on image threshold that computed the maximum 

grayscale intensity value of an image and utilized it as a threshold. Nguyen et al. (2011) 

proposed the Free-Form Anisotropy method, which simultaneously considered not only intensity 

values but also texture and other crack features to detect cracks accurately.  Several studies 

applied these two approaches to data collected from actual structures. For instance, on the basis 

of image morphological operations proposed by Otsu (1979), Xu and Turkan (2020) introduced 

an automated crack detection approach tested with images of a bridge obtained with an 

unmanned aircraft system (UAS). They also utilized image pre-processing steps, such as contrast 

adjustment and noise reduction, to improve their crack detection results. Although most crack 

detection methods based on traditional image morphological operations have yielded meaningful 

results, they do not perform as well when they are applied to images that contain shadows or 

stains, i.e., features that are similar to cracks. 

In the meantime, deep learning-based feature detection methods, which became the 

mainstream application for object/feature segmentation, were also utilized for crack detection. 
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The major CNN-based vision architectures, such as AlexNet (Krizhevsky et al. 2012), VGG-Net 

(Simonyan and Zisserman 2015), Inception Network (Szegedy et al. 2015), and ResNet (He et al. 

2016), offered improved results in detecting and classifying target objects. Consequently, these 

CNN-based vision architectures were adopted for image-based crack detection in several recent 

studies. For example, Dorafshan et al. (2018) focused on comparing the performance of 

conventional edge detectors (Roberts, Prewitt, Sobel, Laplacian of Gaussian, Butterworth, and 

Gaussian) and a CNN-based crack detector. In terms of the CNN-based crack detector, an 

AlexNet crack detector with fully trained, partially re-trained, and pre-trained datasets were 

tested to determine their performance under different circumstances, and images from and 

SDNET dataset that contained various surface defects were used as training, validation, and 

testing datasets (Maguire et al. 2018). They concluded that the CNN-based crack detector 

performed best, resulting in 99 percent precision and 66 percent recall values when the fully 

trained dataset was used. The precision values for partially trained and pre-trained datasets were 

92 percent and 80 percent, respectively, while the recall values were 86 percent and 84 percent, 

respectively. Meanwhile, the precision and recall values obtained with the conventional edge 

detector based on the Laplacian of Gaussian algorithms were 60 percent and 79 percent, 

respectively. Wang et al. (2021) evaluated the crack detection accuracy of six existing CNNs 

(VGG 16, Inception V2, V3, V4, Inception-ResNet-v2, and ResNet V1 50) using an image 

dataset obtained from the inspection of a slab element, and the highest accuracy, 80.1 percent, 

was achieved when the Inception-ResNet-v2 network was used. 

As discussed above, the most recent studies on automated crack detection combined 

different methods to improve the accuracy and reliability of the results. Several studies focused 

on augmenting digital images with three-dimensional (3D) data such as point clouds acquired 

with a laser scanner. This concept was intended to help solve issues related to the interference of 

non-crack features such as shadows because the laser scan data were not affected by light or 

shadow. Chen et al. (2021) used point cloud data to obtain a depth image, which classified 

different features in the image on the basis of their measured depth. In the next step, the depth 

image was used together with the pre-processed image, and by adopting Otsu’s segmentation 

algorithm, the proposed approach achieved, on average, 89.0 percent precision, 84.8 percent 

recall, and 86.7 percent F1 scores. (The F1 score is a machine learning evaluation metric that 

measures a model’s accuracy. It computes how many times a model made a correct prediction 
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across the entire dataset.) Yan et al. (2021) also utilized point cloud data for crack detection, 

which enabled them to segment and exclude background and other non-crack features, thus 

minimizing the impacts of shadows or stains during data processing, a major challenge for 

images obtained in real life (e.g., images of a bridge). They applied this method to images 

obtained from a bridge with a VGG16-based crack detector. By combining the results obtained 

with the point cloud and the images, they achieved 93 percent crack detection accuracy on 

average, and obtained a precision value of 93.9 percent and a recall value of 89.4 percent. 

2.2. Crack Measurement 

The majority of studies on image-based crack measurement have implemented a 

skeletonization algorithm to guarantee the pixel-wise accuracy of the measurement (Yan et al. 

2021, Wang et al. 2021, Qiu et al. 2017). Using binary images to illustrate the crack and non-

crack pixels as 1 and 0, the skeletonization algorithm shrank the crack area and created the 

centerline of the crack (the crack thickness equal to one pixel). From this centerline, referred to 

as the crack skeleton, the length of the crack could be measured by counting the number of pixels 

along the centerline. To measure crack width, which is more challenging, the most accurate 

method proposed to date involved calculating the continuous width of each pixel on the crack 

skeleton by using the orthogonal projection algorithm (Yan et al. 2021, Wang et al. 2021, Qiu et 

al. 2017). First, the orientation, i.e., the slope, of each crack pixel was computed by fitting a line 

over two neighboring pixels of the target pixel on the crack skeleton. Next, an orthogonal line 

perpendicular to the orientation of the crack at the target pixel was projected. This orthogonal 

line defined the direction of the crack width at the target pixel, and two intersecting points 

between the orthogonal line and crack boundaries defined each end of the crack width. As such, 

the width of the crack was calculated as the distance between these two intersecting points. 

Qiu et al. (2017) evaluated the performance of crack width measurements based on the 

skeletonization and the orthogonal projection algorithms. Using images that contained ten 

different cracks, with widths ranging between 18.1 mm and 66.3 mm (the average width was 

36.4 mm), they calculated a 1.4-mm difference, on average, between the ground truth values and 

their results. Yan et al. (2021) implemented a CNN-based algorithm, which utilized both digital 

images and point cloud data, and tested the performance of their crack measurement approach, 

which was based on skeletonization and orthogonal projection algorithms. The test images they 

used included cracks with lengths ranging between 44.5 mm and 559.0 mm and widths ranging 
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between 1.0 mm and 5.0 mm. The results showed error rates of ±3 percent for length 

measurements and ±8 percent for width measurements, on average. Wang et al. (2021), who also 

utilized skeletonization and orthogonal projection methods for crack measurements, focused on 

classifying the cracks into three categories based on average crack widths (i.e., severity levels). 

They used an image dataset containing cracks narrower than 1.0 mm on average, and the results 

showed that the cracks were successfully classified into three categories with an average 

accuracy of 97.41 percent.  

One of the most essential steps in image-based crack measurements has been to convert 

the measured value from pixel dimensions into real scale, such as millimeters or inches (Ni et al. 

2020). For instance, Wang et al. (2021) used the width of a railhead in the image as a reference. 

Because the actual width of the railhead can be identified from its specifications document, they 

were able to calculate the conversion factor easily. Although this approach was fairly 

straightforward, it could be used only if the image contained a certain target feature with known 

dimensions. Furthermore, if the angle of the camera was not parallel to the surface of the area of 

interest, the accuracy of the scale conversion was not guaranteed. Another approach for scale 

conversion was to utilize information from other sources. For example, Yan et al. (2021) used 

values of depth and focal length obtained from lidar data to compute the scale factor. Kalfarisi et 

al. (2020) utilized dimensions obtained from a 3D mesh model, which was reconstructed from 

2D images. The 3D mesh model provided the dimensions in both pixels and metric units. 
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CHAPTER 3.  METHODOLOGY 

3.1. Crack Detection 

This study used MATLABTM image processing tools to implement an image-based crack 

detection methodology that combines a CNN-based crack segmentation algorithm called 

DeepCrack, proposed by Liu et al. (2019), and a traditional image morphological operation based 

on Otsu’s image segmentation algorithm (1979). The first step in this methodology involves 

implementing DeepCrack, a CNN-based crack segmentation algorithm that is based on the 

VGG-16 network. To decrease the time required for training, the study used a pre-trained 

DeepCrack algorithm model that was trained with 4,800 images and tested (for validation) with 

3,792 images. Note that the pre-trained DeepCrack model’s global prediction accuracy was 

98.73 percent, and its precision, recall, and F1 scores were 85.82 percent, 84.56 percent, and 

85.18 percent, respectively (Liu et al. 2019). The next step of the methodology involves utilizing 

an image morphological operation that is based on Otsu’s image segmentation algorithm, 

together with additional pre-processing (e.g., contrast adjustment, smoothing) and post-

processing (e.g., area filtering) steps (Xu and Turkan 2019). The steps of the proposed crack 

detection methodology are detailed in Figure 3.1.  

First, the original image is pre-processed with grayscale conversion, brightness 

adjustment, and contrast enhancement techniques, respectively. In particular, the brightness of 

the converted grayscale images is increased by 10 percent of the average gray level of each 

image. This reduces interference with light-shaded non-crack features such as stains or shadows 

to differentiate and accurately extract the target crack. Next, during the contrast enhancement 

step, the adjusted image is saturated with the bottom and top 25 percent of all pixel intensity 

values to identify the target crack. 

After these three pre-processing steps, two different methods are applied to the pre-

processed images in parallel: The first method involves applying the pre-trained DeepCrack 

model to the pre-processed image. The pre-trained DeepCrack algorithm produces a grayscale 

image with predicted cracks, and this image is post-processed by using image contrast saturation 

with the bottom and top 10 percent of all pixel intensity values, and then binarized. 
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Figure 3.1 Crack Detection Procedure 

 
The second method applied to the pre-processed image is a conventional image 

morphological operation process. This consists of procedures such as smoothing via median 

filtering to reduce the interference of non-crack features, bottom-hat transformation to extract 
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darker regions (that may be mistaken for target cracks) in the preprocessed image, and pre-area 

filtering that uses a threshold value to exclude smaller features in the image. More specifically, 

the median filter targets “salt and pepper” noise and aims to replace a pixel value with the 

median value of the surrounding three-by-three neighborhood. Bottom-hat transformation is used 

to extract the darker regions in an image by dilating the morphological closing of the image and 

subtracting it from the original image (Bai et al., 2012). Pre-area filtering is used to remove 

smaller features (smaller numbers of pixels) than the pre-determined threshold value. In this 

study, the threshold value was set at ten pixels to distinguish major cracks and smaller features 

that might be mistaken for cracks.   

After this two-step process that implements both DeepCrack and image morphological 

operations, the preliminary results obtained from each step are integrated such that two binary 

images are simply combined to preserve the characteristics of each process. In the next step, the 

image is post-processed using second area filtering and a hole-filling operations. The second area 

filtering discards features that contain fewer than 30 pixels to preserve minor cracks that are 

detected by the DeepCrack algorithm. The hole-filling operation is applied to link features that 

make up the same crack. Finally, crack boundaries are extracted by using an image gradient 

threshold technique. 

3.2. Crack Measurement 

In this process, two algorithms, namely skeletonization and orthogonal projection 

algorithms, are used (Figure 3.2) for crack measurements. The binary image obtained at the end 

of the crack detection process (detailed in Section 3.1) is first skeletonized. Because the original 

crack skeleton contains several branches that are not associated with the crack length or the main 

orientation of the crack, a post-processing method is used to filter those branches (i.e., pruning). 

Next, an orthogonal projection algorithm is applied to the crack skeleton. The orientation of the 

crack skeleton is computed for each pixel, and the target pixel’s orthogonal line is projected. By 

merging these projected orthogonal lines and the binary image of crack boundaries (obtained 

from the crack detection step), two intersecting points are obtained between the orthogonal line 

and crack boundaries. As detailed in Chapter 2, crack length is measured by counting the number 

of pixels along the crack skeleton, and the width of the crack is measured by calculating the 

distance between the orthogonal line and crack boundaries. Finally, the crack length and width 
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dimensions, which have been calculated in number of pixels, are converted into metric 

dimensions by using the actual dimensions of the specimen used in this study. 

 

 
Figure 3.2 Crack Measurement Procedure 
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CHAPTER 4. EXPERIMENTS 

The proposed methodology  described in Chapter 3 was applied to six images containing 

ten cracks obtained from  shear strength experiments conducted at the University of Washington 

(UW) Structures Laboratory. Detailed information about the experimental data and procedure is 

presented in this section. 

4.1. Experimental Data 

Six images obtained from shear strength experiments conducted on ultra-high-

performance concrete (UHPC) were used in this test (Voytko et al. 2022). For each experiment, 

an 890 × 890 × 70 mm UHPC panel was tested under shear loads using the UW Panel Element 

Tester, and cracks in various shapes were expected to occur. With this series of experiments, 

large-sized cracks occurred along with multiple smaller and thin cracks. These large-sized cracks 

were great for testing the performance of the proposed crack detection and measurement 

methods, as they included multiple thin crack branches.  

Because the original images contained excessive amounts of non-target features, such as 

the panel test frame and markers indicating the cracks, the test images were manually cropped 

and trimmed to extract the regions of interest, i.e., large cracks and their branches. When the 

region of interest in an image was extracted, the shape of the target crack was preserved, and the 

properties of the original images were kept as-is (Figure 4.1). In the meantime, the background 

containing the panel test frame and the markers were manually removed from the image. The 

size of the manually cropped test images were 1808 × 1748, 1350 × 1394, 2044 × 2011, 2358 × 

2336, 2299 × 2263, and 2146 × 2055 pixels, respectively. 

Test images 1 and 2 both contained one large crack with multiple branches. Test image 3 

contained one circular defect and a large crack, but the purpose of this test was to extract the 

crack (Crack 3-2), not the circular defect. Test images 4, 5, and 6 contained multiple cracks of 

various shapes and sizes. When the crack detection algorithm was run on test images 4, 5 and 6, 

the cracks were defined on the basis of the segmentation results (i.e., if there was a clear, 

connected white panel area between each crack, these cracks were regarded as separate cracks). 

On the basis of the segmentation results, the test image 4 was found to contain three cracks, and 

test images 5 and 6 both contained two cracks. To summarize, a total of ten cracks from six 

images were extracted by using the proposed crack detection and measurement methods in this 

study. 
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Figure 4.1 Original Images (Left) and Region of Interest in the Test Images (Right) 
 

4.2. Experimental Procedure 

The six test images containing ten cracks were processed with the crack detection and 

measurement methods proposed in this study. First, the performance of the crack detection 

method was evaluated. By utilizing manually annotated ground truth, the precision, recall, and 

F1 score values of the crack detection method were calculated. The ground truths (crack borders) 

used in this evaluation were selected on the basis of human judgment. In the next step, using the 
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manually annotated borders, the test images were converted into binary images, i.e., images 

made of crack and non-crack pixels. 

In the next step, the automatically measured crack length values were compared to the 

manually annotated length values. To calculate the ground truth for crack lengths, each crack 

was divided into ten segments and measured manually. The orientation of each segment was 

preserved to enhance the overall accuracy. The ground truth for the crack length was calculated 

by adding up the length of each segment. 

To determine the performance of width measurements, five checkpoints along a given 

crack were selected in each test image, and the automatically measured width values at those 

checkpoints were compared to the manually annotated width values. Similarly, the ground truths 

for crack widths were measured manually. The crack width at each checkpoint was measured 

manually, and the orientation of crack widths were determined on the basis of the proposed 

approach in this study to compare the performance of width measurements. 
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CHAPTER 5.  RESULTS 

As detailed in Chapter 4, the overall performance of the proposed crack detection and 

measurement methodology was evaluated by using data obtained from shear strength 

experiments conducted at the UW Structures Laboratory. First, crack detection accuracy was 

evaluated against manually annotated ground truths. Furthermore, to determine the limitations of 

the proposed crack detection approach, crack detail losses were evaluated by using the maximum 

widths of those crack sections. The accuracy of the crack measurement results was evaluated by 

comparing them to manually measured ground truths. Similarly, to determine the limitations of 

the proposed crack measurement approach, detail losses that occurred during the branch filtering 

step (i.e., pruning) were calculated. 

5.1. Crack Detection 

The ground truth images used to evaluate the crack detection performance were generated 

manually. Starting from the original test images, the boundaries of the target cracks were 

determined on the basis of human judgment. Next, the target crack boundaries were annotated. 

Following the annotation step, these images were converted into binary images to differentiate 

between crack and non-crack pixels.   

By comparing the automated crack detection results, which were also binary images, with 

the ground truths, each pixel in the test images was classified as true positive (TP), false negative 

(FN), false positive (FP), and true negative (TN), as described in Table 5.1. Finally, on the basis 

of the classification results, the performance of the proposed crack detection approach was 

evaluated by using a positive prediction value (PPV; also referred to as precision), negative 

prediction value (NPV), true positive rate (TPR; also referred to as recall or sensitivity), true 

negative rate (TNR), accuracy (ACC), and F1 score (F1), which are defined below. 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

𝑁𝑁𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁
 

𝑇𝑇𝑃𝑃𝑇𝑇 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

𝑇𝑇𝑁𝑁𝑇𝑇 =
𝑇𝑇𝑁𝑁

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁
 

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑃𝑃 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑁𝑁
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𝐹𝐹1 =
(2 × 𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑇𝑇𝑃𝑃𝑇𝑇)

𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑃𝑃𝑇𝑇
 

 
Table 5.1 Crack Detection Results Confusion Matrix 

Image Predicted Crack Predicted Non-crack - 
Actual Crack True Positive (TP) False Negative (FN) True Positive Rate 

(TPR) 
Actual Non-crack False Positive (FP) True Negative (TN) True Negative Rate 

(TNR) 
- Positive Predictive Value 

(PPV) 
Negative Predictive Value 

(NPV) 
Accuracy 

(ACC) 
 

As stated above, the images used in this study were collected from six different 

specimens, and the average number of total pixels per image was 4,045,621. Because every 

ground truth image was generated from the original image, the number of total pixels per ground 

truth image was same as those of the original test image.  

The average crack detection accuracy, positive predictive value (precision), true positive 

rate (recall), and F1 scores obtained for each image are presented in tables 5.2 through 5.7, and 

Table 5.8 presents the average accuracy, precision, recall, and F1 values, which were 0.9968, 

0.9123, 0.9481, and 0.9290, respectively. Even though a high level of accuracy was achieved for 

all the test images, the precision values were relatively low for images 2 and 5, and the recall rate 

obtained for images 1 and 3 were relatively low as well. The low precision values in images 2 

and 5 stemmed from the FP values (i.e., non-crack pixels that were predicted/classified as crack 

pixels), which resulted in several thin cracks being detected as larger/wider cracks. The low 

recall rate obtained for images 1 and 3 stemmed from the FN values (i.e., crack pixels that were 

predicted/classified as non-crack pixels), which means that several thin cracks were lost during 

this process. The cause of both the low precision and low recall values stemmed from the post-

processing procedure adopted in this study, which used definitive image adjustment algorithms 

to detect clearly identifiable cracks, resulting in FPs and FNs in dealing with thin cracks.  

 
Table 5.2 Crack Detection Results for Test Image 1 

Image Predicted Crack Predicted Non-crack - 
Actual Crack TP = 75,235 FN = 8,069 TPR = 0.9031 

Actual Non-crack FP = 3,364 TN = 3,073,716 TNR = 0.9989 
- PPV = 0.9572 NPV = 0.9974 ACC = 0.9964 

Table 5.3 Crack Detection Results for Test Image 2 
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Image Predicted Crack Predicted Non-crack - 
Actual Crack TP = 38,037 FN = 917 TPR = 0.9765 

Actual Non-crack FP = 6,572 TN = 1,836,374 TNR = 0.9964 
- PPV = 0.8527 NPV = 0.9995 ACC = 0.9960 

 

Table 5.4 Crack Detection Results for Test Image 3 
Image Predicted Crack Predicted Non-crack - 

Actual Crack TP = 78,560 FN = 7,785 TPR = 0.9098 
Actual Non-crack FP = 3,629 TN = 4,020,510 TNR = 0.9991 

- PPV = 0.9558 NPV = 0.9981 ACC = 0.9972 
 

Table 5.5 Crack Detection Results for Test Image 4 
Image Predicted Crack Predicted Non-crack - 

Actual Crack TP = 97,702 FN = 6,962 TPR = 0.9335 
Actual Non-crack FP = 9,461 TN = 5,394,163 TNR = 0.9982 

- PPV = 0.9117 NPV = 0.9987 ACC = 0.9970 
 

Table 5.6 Crack Detection Results for Test Image 5 
Image Predicted Crack Predicted Non-crack - 

Actual Crack TP = 107,226 FN = 1,158 TPR = 0.9893 
Actual Non-crack FP = 16,409 TN = 5,077,844 TNR = 0.9968 

- PPV = 0.8673 NPV = 0.9998 ACC = 0.9966 
 

Table 5.7 Crack Detection Results for Test Image 6 
Image Predicted Crack Predicted Non-crack - 

Actual Crack TP = 125,779 FN = 3,046 TPR = 0.9764 
Actual Non-crack FP = 8,849 TN = 4,272,356 TNR = 0.9979 

- PPV = 0.9343 NPV = 0.9993 ACC = 0.9973 
 

Table 5.8 Crack Detection Performance Results 
Image Accuracy PPV (= Precision) TPR (= Recall) F1 Score 

1 0.9964 0.9572 0.9031 0.9294 
2 0.9960 0.8527 0.9765 0.9104 
3 0.9972 0.9558 0.9098 0.9323 
4 0.9970 0.9117 0.9335 0.9225 
5 0.9966 0.8673 0.9893 0.9243 
6 0.9973 0.9343 0.9764 0.9548 

Average 0.9968 0.9132 0.9481 0.9290 
 

To supplement the quantitative metrics used to measure the crack detection performance 

of the proposed approach, a qualitative approach was also used to further evaluate the 

preservation of details. As depicted in figures 5.1 and 5.2, shapes of target cracks in all six 
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images were captured successfully. However, the branches that were very thin were lost, i.e., not 

captured (Figure 5.3). Note that the average width where the detail losses occurred was 1.05 mm 

(or 2.18 pixels). In general, thin cracks on reinforced concrete structure surfaces are negligible 

according to the standards (Calvi et al. 2018) because their impact on the integrity of a structure 

is negligible.  

 

 
Figure 5.1 Images (Left) and Crack Detection Results (Right) 
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Figure 5.2 Detailed Detection Results from Image 1 

 

 
Figure 5.3 Detail of Losses during Crack Detection 
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5.2. Crack Measurements 

In this step, a real-scale conversion factor for each test dataset was calculated to convert 

pixel-dimensions into metric dimensions (in millimeters). First, the lengths of all four sides of 

the concrete panels in each image were manually measured in pixel-dimensions, and the average 

length was obtained. Because the actual length of the test panel equaled 890 mm, the conversion 

factor for each image was obtained by dividing the actual length with the measured length 

(mm/pixels). The conversion factors for the six test images were calculated as 0.4904, 0.6445, 

0.4457, 0.4353, 0.4353, and 0.4744 mm/pixel, respectively. 

In the next step, the performance of the skeletonization and branch filtering algorithms 

was evaluated by measuring the loss in crack skeletons’ length. Following the initial 

skeletonization, multiple branches along the crack skeleton were detected because the target 

cracks in the test data had multiple orientations (based on their direction). Accordingly, a branch 

filtering algorithm was applied to discard any unnecessary branches and to obtain the crack 

skeleton in 1-pixel thickness. The branch filtering algorithm used was based on a pre-determined 

threshold value, which is based on the length of each segment along the main skeleton. These 

filtering steps were also applied to each end of the main skeleton, resulting in crack length loss 

(Figure 5.4). The total length loss (for a total of ten cracks) due to the branch filtering was 

515.20 mm, equal to 51.52 mm per crack on average.  
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Figure 5.4 Skeletonization Results and Pixel Loss due to Branch Filtering 

 
The length measurements and the amount of loss in length are presented in tables 5.9 and 

5.10. The average accuracy of the length measurement was 88.17 percent. In this evaluation, the 

actual crack length (ground truth) was obtained by dividing each crack into ten segments that 

shared the same orientation (based on human judgment) and then adding them up.  

Table 5.9 Loss of Length from Branch Filtering 
Image Target 

Crack 
Loss of Length (mm) Ground Truth (mm) Ratio (%) 

1 1-1 101.50 1210.84 8.38 
2 2-1 29.99 910.31 3.29 
3 3-2 31.45 802.83 3.92 
4 4-1 34.94 316.99 11.02 

4-2 78.67 755.51 10.41 
4-3 28.31 334.22 8.47 

5 5-1 62.64 881.02 7.11 
5-2 48.69 355.02 13.72 

6 6-1 42.81 1063.99 4.02 
6-2 56.21 274.09 20.51 

Average Ratio based on Ground Truth 7.46 
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Table 5.10 Length Measurement Results 
Image Target 

Crack 
Proposed method 

(mm) 
Ground Truth (mm) Accuracy (%) 

1 1-1 1087.25 1210.84 89.79 
2 2-1 795.34 910.31 87.67 
3 3-2 692.57 802.83 86.27 
4 4-1 295.14 316.99 93.11 

4-2 680.82 755.51 90.11 
4-3 299.49 334.22 89.61 

5 5-1 787.44 881.02 89.38 
5-2 294.69 355.02 83.01 

6 6-1 953.00 1063.99 89.57 
6-2 202.08 274.09 73.73 

Average Accuracy based on Ground Truth 88.17 
 

Finally, the crack width measurement results were evaluated by measuring the widths of 

five random checkpoints along each test image. Given the coordinates of the selected 

checkpoints, their width were measured by using the method detailed in Section 3.2. The actual 

crack widths (ground truths) at each checkpoint were manually measured directly from the 

original image. The automatic width measurement results (based on orthogonal projection), as 

well as the ground truth values for all check points, are provided in Table 5.11. As can be seen, 

the average width measurement accuracy for each image, 1 through 6, was 94.68 percent, 93.48 

percent, 93.89 percent, 94.63 percent, 95.31 percent, and 94.39 percent, respectively.  
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Table 5.11 Width Measurement Results 
Image Target 

Crack 
Checkpoint Automated 

Measurement 
(mm) 

Ground Truth 
(mm) 

Accuracy 
(%) 

1 1-1 (583, 276) 29.82 31.21 95.56 
(755, 472) 27.41 28.51 96.15 
(1052, 720) 16.67 17.16 97.14 
(1372, 993) 18.03 19.42 92.86 
(1492, 1175) 15.26 16.65 91.67 

Average - 1 94.68 
2 2-1 (314, 1255) 27.71 29.65 93.48 

(538, 928) 10.94 11.85 92.31 
(669, 775) 10.94 11.85 92.31 
(922, 503) 9.23 10.09 91.47 
(1074, 355) 38.91 39.78 97.82 

Average - 2 93.48 
3 3-2 (510, 630) 11.34 12.61 90.00 

(660, 847) 20.17 20.80 96.97 
(897, 1079) 11.98 12.61 95.00 
(1114, 1260) 34.76 36.54 95.12 
(1395, 1534) 11.96 12.96 92.31 

Average - 3 93.89 
4 4-1 (572, 651) 6.16 6.77 90.91 

4-2 (912, 941) 11.32 11.75 96.30 
(1189, 1144) 17.24 17.85 96.55 

4-3 (1598, 1561) 9.23 9.85 93.75 
(1748, 1830) 13.54 14.16 95.65 

Average - 4 94.63 
5 5-1 (444, 481) 18.47 19.08 96.77 

(727, 832) 12.31 13.54 90.91 
(826, 1023) 20.83 22.00 94.69 

5-2 (1379, 1477) 22.78 23.39 97.37 
(1555, 1736) 26.55 27.42 96.83 

Average - 5 95.31 
6 6-1 (477, 501) 23.48 24.82 94.59 

(600, 617) 14.64 15.91 92.04 
(1132, 1034) 9.49 10.44 90.91 

6-2 (1302, 1198) 23.48 24.15 97.22 
(1504, 1419) 43.91 45.19 97.18 

Average - 6 94.39 
Average - Total 94.40 
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Figure 5.5 Representation of Width Measurement 
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CHAPTER 6.  CONCLUSIONS 

Identification and assessment of surface defects on concrete structures are vital to 

evaluate their condition. Cracks are one of the major surface defects and indicate concrete 

structures’ stability and durability. Because current methods to assess concrete cracks rely on 

manual identification and assessment, which are time consuming, labor intensive, and prone to 

errors, recent studies have focused on leveraging computer vision and machine learning 

techniques to automate this process.  

Accordingly, this study proposed a methodology for automated crack detection and 

measurement. This method combines a CNN-based algorithm and traditional image 

morphological operations for crack detection with a crack measurement approach based on 

skeletonization and orthogonal projection algorithms. The overall performance of the proposed 

methodology was evaluated by using images of concrete panels obtained from shear strength 

tests on UHPC that were conducted in a controlled laboratory environment. The proposed 

methodology was tested for crack detection and measurement accuracy by evaluating test results 

quantitatively. The test results showed that the proposed crack detection method accurately 

detected crack and non-crack pixels with an average accuracy of 0.9968 and an average F1 score 

of 0.9290. Although thin cracks that were 1.05 mm (corresponding to 2.18 pixels) or thinner 

were not detected, this can be considered insignificant in real-life situations because such thin 

cracks do not have a major impact on the integrity of a structure. The results of the crack 

measurements that were based on skeletonization and branch filtering algorithms were also 

evaluated quantitively. For the six test images containing ten cracks, the proposed crack 

measurement method achieved an average accuracy of 88.17 percent for length measurements, 

with a 7.46 percent loss in length during the branch filtering process, and an average accuracy of 

94.40 percent for width measurements.  

As presented in this study, the proposed crack detection and measurement methodology 

produced promising results. However, the proposed methodology has several shortcomings that 

must be addressed in future research. First, the ground truths, both for crack detection and 

measurement, were obtained through manual annotations. Although these ground truths were 

meant to offer an apple-to-apple comparison, an in-depth evaluation with different sources of 

ground truths is needed to validate the versatility of the proposed approach. For instance, 3D-
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scanned point cloud data or even physically measured results can be utilized as alternative 

ground truths. 

Focusing on the performance of the methodology itself, the branch filtering steps need to 

be fine-tuned because the loss in crack length due to branch filtering impacts the overall 

accuracy. Given the average crack length loss results presented in this study, improving the 

branch filtering steps could ensure better accuracy for crack length measurement. Furthermore, 

crack length losses were observed at either ends of a crack, and further image processing steps 

could be implemented to preserve the main skeleton on both ends. 

This study used a readily available CNN architecture called DeepCrack, which is open-

source, has easy-to-use architecture, and performs very well with a pre-trained model. However, 

a brand-new CNN-based crack detector with a smaller number of layers (to decrease the time 

and load required for training) could be developed to make rapid structural assessments more 

feasible.  

The study presented here is intended to be an important component of an overall research 

framework meant to develop a method for rapid structural assessmentby utilizing UAS images 

and automatically detecting and measuring the surface defects of large structures such as multi-

story buildings or bridges. It is envisioned that, in this overall framework, structural assessment 

results, i.e., surface defects, would be mapped to building information models (BIM), in which 

inspection reports from different dates could be integrated with structural drawings and models 

in a single database. 
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